انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Authors
Abstract:
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches to hyperspectral data classification is inaccurate class parameters estimation. It has been found that the conventional approaches can be retained if a preprocessing stage is established before feature extraction procedure in classification of hyperspectral data. For preprocessing stage it has been proposed two steps in this paper including dimensionality reduction and class separability improvement. Sequential Parametric Projection Pursuit was used for dimensionality reduction because of its special characteristics. Projection Pursuit algorithm performs the computation of class parameter estimation at a lower dimensional space, giving better parameter estimation. For class separability improvement a lowpass filter has been used after dimensionality reduction. This paper shows that for different number of features, classification accuracy is improved when the preprocessing stage is applied.
similar resources
تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی
فنآوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقهبندی پوششهای زمین و بررسی تغییرات آنها میباشد. با پیشرفتهای اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه بندی تصاویر ابرطیفی ایجاب میکند. در این تحقیق سعی میگردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریت...
full textارزیابی تکنیک های مختلف طبقه بندی شی گرا در استخراج کاربری اراضی از تصاویر ماهواره آیکونوس
طبقهبندی تصاویر ماهوارهای با استفاده از پردازش شیگرا تاکنون با بهرهگیری از تکنیکهای مختلف به طور گستردهای مورد استفاده قرار گرفته است. اگرچ...
full textطبقه بندی زعفران با استفاده از ویژگی های رنگی استخراج شده از تصویر
طبقهبندی زعفران به عنوان گرانترین ادویه از اهمیت بالایی برای مشتریان و تجار برخوردار است. به طور کلی، در حال حاضر دو روش برای درجهبندی زعفران استفاده میشود. روش اول براساس تجربیات فرد خبره و با مشاهده نمونهها انجام میشود. روش دوم تخریبی بوده و با استفاده از متدهای آزمایشگاهی انجام میگیرد. طبق نظر متخصصان، استفاده از تکنیکهای یادگیری ماشین برای طبقهبندی زعفران به دلیل داشتن ماهیت غیر مخ...
full textشناسایی پدیده های طیفی ناشناخته از داده های تلفیقی تصاویر ماهواره ای ALI+ASTER و ابر طیفی Hyperion بر مبنای روش ضریب همبستگی:مطالعه موردی محدوده معدنی مس سرچشمه
یکی از مسائل مهم در بکارگیری تصاویر ماهواره ای چند طیفی و ابرطیفی، شناسایی و تشخیص رفتارهای طیفی متفاوت و به تصویر کشیدن الگوی رفتاری آنها می باشد. که این امر تنها از طریق الگوریتمهای شناساگر که قادر به تشخیص شباهتهای طیفی مشاهدات آزمایشگاهی و یا صحرایی با داده های ماهواره ای می باشد، امکان پذیر است. در این تحقیق سعی شده تا بوسیله توسعه الگوریتمی مبتنی بر تصویر کردن طیف کانیها و مقایس...
full textMy Resources
Journal title
volume 42 issue 3
pages 327- 338
publication date 2013-05-05
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023